THE PROGRESS OF HYBRID RICE RESEARCH AND DEVELOPMENT IN INDONESIA

Presented in "The 5th International Hybrid Rice Symposium" Changsa, China 11-15 September 2008 S a t o t o and Hasil Sembiring Indonesian Center for Rice Research J. Raya 9 Sukamandi, Subang 41256, Telp. 0260 520157, Fax. 0260 520158, email : balitpa@telkom.net

HYBRID RICE RESEARCH IN INDONESIA IN THE PAST

• HR research → started in 1983.

- Unfil 1990s, HR research has not been successfull as expected A difficulties in obtaining stable CMS lines with high outcrossing rates (> 20%), and adapted to Indonesian environment.
- RYT → showed that the highest yield was always obtained by hybrid rice combinations.
- Finally resulted in several hybrid combinations showing consistently higher yield than check varieties → IR58025A/IR53942 and IR58025A/BR827-35 which were then released in 2002 as Maro and Rokan.

• Since 2001, HR research was intensified → collaboration between IAARD with IRRI and FAO.

- ICRR had come out with several promising hybrid combinations and new CMS, maintainer, and restorer lines.
- / In 2004 → HiPa3, HiPa4,
- In 2006 →HiPa5 Ceva and HiPa6 Jete.
- The superiority of those new hybrids compared to Maro and Rokan were their degree of resistance to major pest and diseases, and one of them was aromatic.

Badan Litbang

	Table 1. Hybrid	Rice	Varieties Released in Indonesia
No.	Breeding Inst	No	Hybrid Varieties
	ICRR	6	Maro, Rokan, Hipa 3, Hipa 4, Hipa 5 Ceva, Hipa 6 Jete
2	BISI	2	Intani 1, Intani 2
3	Bangun Pusaka	2	LP Pusaka 1, LP Pusaka 2
4	Kondo	5	Miki 1,2,3; Manis 4 & 5
5	Bayer Crop Sci	2	Hibrindo R1, Hibrindo R2
6/	KNB Mandiri		Batang Kampar, Batang Samo
7	Dupont	2	PP-1, PP-2
8	Makmur SNT	2	Brang Biji, Segara Anak
9	TU Saritani		Adirasa-1, Adirasa-64
10	SL Agritech	2	SL-8-SHS, SL-11-SHS
11	Primasid	2	Mapan-P.02, Mapan-P.05
12	SAS	2	Bernas Super, Bernas Prima
13	Biogene Plantation	4	Sembada B3, SB-5, SB-8, SB-9
	Total	35	6 public + 29 private

Major challenges on the large scale adoption of hybrid rice technology in Indonesia are :

• very high expectations of farmers

*

- inadequate understanding of agronomic management of hybrids,
- poor grain quality of some hybrids compared to premium quality rice varieties (milling recovery, percent of broken rice, etc)
- inadequate level of disease/insect resistance in the most released hybrids,

Some programs to encounter the constraints are in progress :

- Improving the hybrid and parental lines resistance to major pest and diseases
- enhancing the level of heterosis through indica x tropical japonica hybrids
- Improving grain quality of hybrids by appropriate breeding and selection of parental lines
- Improving cultivation and pest management strategies for consistent performance of hybrids

District		Maro	F	Best check *	
District	(t/ha)	(%) **	(t/ha)	(%) **	(t/ha)
Subang	7.20		7.9		-
Sragen /	7.83	92.7	9.57	113.3	8.45
Blitar	8.94	93.5	11.06	115.7	9.56
Bojønegoro	6.10	87.0	7.52	107.3	7.01
Palas	7.30	146.0	7.40	148.0	5.00
Musirawas	6.34	108.9	7.30	125.4	5.82
Tnh Datar	5.60	116.7	5.32	110.8	4.80
Maros	8.38	113.9	7.84	106.5	7.36
Goa	7.09		7.53		
Pontianak	5.32	118.2	5.60	124.4	4.30
Average	7.01	106.9	7.70	117.4	6.56

ICFORD	2003	
No. of Locations		14 district
Average yield Maro		7.3 t/ha
Average yield Rokan		7.5 t/ha
Standard Heterosis		-11% to 46% (14%)
Attainable yield Rokan		11.06 t/ha
Attainable yield Ciherang (inbred)		9.60 t/ha
Hybrid productivity		5.52 to 11.06 t/ha

No		Grair	Grain Yield (t/ha) at 14% MC					
110	Hybrid	Ski DS 2007	Kng DS 2007	Ski DS 2008				
1	Maro	7,40	6.90	7.47*				
	Rokan	6,81	6.40	7.19				
3/	Hipa3	7.74 ns	8,11 **	7.42*				
/4	Hipa4	7.23	6,66	7.00				
5	Hipa5 Ceva	7.87 ns	6,74	7.55*				
6	Hipa6 Jete	6.47	7,35*	6.17				
	Arize R1	6.99	6,91	6.98				
8	Arize R2	6.94	6,05	5.89				
	Intani-2	7.25	7,64*	7.56*				
10	PP1	7.12	5,56	6.72				
11	PP2	6.98	7,36*	7.10				

		/					
		Grain Yield (t/ha) at 14% MC					
No	Hybrid Rice Varieties	Sukamandi DS 2007	Kuningan DS 2007	Sukamandi DS 2008			
12	Bernas Prima	6.37	7,13*	-			
13/	Bernas Super	7.18	7.92*	6.94			
14	Batang Kampar	5.89	7.82*				
15	Batang Samo	7.55	8.10 **	7.13			
16	Brang Biji	6.78	6.50				
17.	Segara Anak			7.24			
18	Adirasa-64	6,04	6.90	7.04			
19	SL-8-SHS	6.59	6,10	7.80*			
20	Mapan P-02	8.89 *	6.97	7.16			
21	Ciherang (inbred)	8.06	6.06	6.39			

(Program & Activities	*
	Short term	<u> </u>
~ ***	 Identify and select Indonesian R lines 	
	 Evaluate & test yield potential of promising hybrid & release hybrid rice derived from IRRI CMS X_ICRR Restorer with standard heterosis of 15-20% > the best inbred 	
	Long term	
/	Improvement of CMS & restorer (R) adapted under Indonesia condition	
	 Evaluate & test yield potential & release 'local' hybrids (deriving from Indonesia CMS & R lines) with standard heterosis 20-25% & resistant to major pest and disease 	
	 Develop NPT hybrid with standard heterosis 25-30% > tl best inbred 	he
	Badan Litbang	

No.		/	Reaction score to						
	Restorer	Bph3	BLB IV	BLB VIII	RTV				
1	S4124F	3	4	5	5				
2	B9645E		3	4	4				
	B4070D	9	4	4	5				
4	B10373E	3	4	4	3				
5 /	B9775B	5	4	4	3				
6/	B2791B	9	4	4	4				
ħ	B8239G	9	4	4	4				
8	S4325D	3	3	4	3				
9	S4424F	3	4	5	5				
10	B8049F	5	4	4	6				
11	BIO9	3	3	4	2				
12	B5960	9	4	4	3				
13	BP51	9	3	4	2				
14	BIO12-2	3	3	4	4				
15	B10214F-2	5		4	4				
16	B10214F-1	5	4	4	3				

V							
		Reaction score to					
No.	Restorer lines	Bph3	BLB IV	BLB VIII	RTV		
Y	S4850-9F-6	3	4	4	6		
2	S4653-164	3	5	5	7		
3	B8974B	3	5	5	5		
4	B10277D-1	3	5	5	6		
5	BP1368-1D	3	5	5	6		
6	BP1088-2E	3	5	5	7		

No.	Tratesta		C to to to			
	нурпа	Bph3	BLB IV	BLB VIII	RTV	- Status
1	Hipa3	7	4	4	6	Released
2	Hipa4					Released
3	ни3		4			AYT
4	H14		3			AYT
5 /	H17		4			MLT
6/	H27					MLT
1	H29				8	MLT
8	H30			4		MLT
9	H33					MLT
10	Hipa5 Ceva					Released
11	Hipa6 Jete					Released
12	H39					AYT
13	H42					MLT
14	H48	3	5	5	4	AYT

No.	Hybrid	Hybrid		action to		Statue
	Hybrid	Bph3	BLB IV	BLB VIII	RTV	Status
15	H51	9	3	4		MLT
16	H54	5	4	4	5	AYT
17	H\$5		4	4	3	AYT
18	H57	5	4	5	2	MLT
19/	H58		5	4	2	AYT
20	H59	5	5	5	3	AYT
21	H60		5	5	3	AYT
22	H63	5	4	4	3	MLT
23	H50	9	5	5	3	AYT
24	H64	5	5		2	AYT
25	H67	5	5		3	AYT
26	H68	3	5		5	MLT
27	H70	3	5	5	4	MLT
28	H71	3	5	5	5	MLT

		/						
Hybrid	Muara		Suka	mandi	Cia	Cianjur		rage
Check	Yield (t ha)	IR64* (%)	Yield (t/ha)	IR64* (%)	Yield (t/ha)	IR64* (%)	Yield (t/ha)	IR64 ³ (%)
H30	5.14	21.88	6.11	7.19	7.61	18.72	6.28	15.5
H35	4.94	17.06	6.16	8.07	9.61	49.92	6.90	26.8
H42	5.79	37.24	7.05	23.68	9.62	50.07	7.48	37.5
H50	4.83	14.38	5.80	1.75	8.02	25.12	6.21	14.2
H55	5.08	20.36	5.80	1.75	9.21	43.68	6.69	23.0
H56	5.50	30.28	6.25	9.65	8.02	25.11	6.58	21.0
H58	5.61	32.98	6.16	8.07	8.42	31.25	6.72	23.6
H59	5.12	21.36	6.10	7.02	7.63	18.75	6.27	15.3
H65	5.08	20.48	5.97	4.74	8.40	31.25	6.48	19.2
H68	4.72	11.74	7.06	23.86	8.02	25.12	6.59	21.2
H70	4.71	11.68	6.74	18.25	8.03	25.27	6.48	19.2
Maro	5.77	36.72	5.12	-10.18	10.01	56.16	6.96	27.6

	/					
Hybrids/check variety	Flowering (days)	Plant height (cm)	No. tillers	BLB (skor) *	Yield (t/ha)	St. het (%)
IR68897A/BP165	90	99	13	5	7.34	50.12
IR68885A/BP154E	95	95	11	5	7.44	48.85
IR68885A/BIO-12	98	72	18	3	6.51	34.91
IR68885A/IR68077	89	88	13	5	6.56	34.32
IR62829A/IR59544	90	93	15	5	6.68	33.55
IR688888A/BIO-12	92	97	12	3	6.49	32.14
IR68886A/BIO-12	89	94	15	3	6.35	31.83
IR62829A/BP1028F	96	97	14	5	6.58	31.53
IR688888A/IR68078	95	85	15	5	6.54	30.69
IR68885A/IR25912	99	73	16	3	6.41	28.12
IR64 (Check)	97	89	11		4.89	
Maro (Check)	104	70	12		5.60	14.48

Habid	Location				
Hybrid	Bantul	Cianjur	Klaten	Salatiga	
H17	9.92*	7.18*	8.28	7.15	
H22	3.73*	7.25*	10.60	7.36	
H25	10.23*	6.77	9.73	6.41	
H27	8.59*	7.56*	10.07	8.23	
H51	7.64	7.27*	11.11	7.32	
H53	8.49*	6.83	10.30	5.10	
H72	10.59*	6.90	11.28	7.34	
H73	8.06	6.52	9.73	7.26	
H88	9.89*	7.61*	10.44	6.60	
H90	9.97*	7.95*	10.92	6.33	
Maro	8.03	7.37*	10.32	7.21	
Ciherang	7.64	5.00	9.79	6.88	
LSD (5%)	0.69	1.98	2.73	2.05	
CV (%)	7.02	15.80	18.60	18.40	

Hybrids	Yield (t/ha)	St. Het on IR64 (%)	bi ⁽¹⁾	Sd ⁽²⁾
IR58025A/MTU9992	8.63	19.7	1.20 ^{ns}	1.96 ns
IR58025A/C20R	7.59	5.3	0.83 ns	1.37 ns
IR58025A/IR65515	7.99	10.8	1.22*	1.83 ns
IR62829A/MTU9992	8.01	11.1	1.09 ^{ns}	1.91 ns
IR58025A/RHS-412	7.65	6.1	0.96 ^{ns}	1.57 ns
IR58025A/B10277	7.68	6.5	0.95 ^{ns}	1.39 ns
IR58025A/Maros	7.39	2.5	0.99 ^{ns}	1.62 ns
IR58025A/Cisokan	7.46	3.5	1.01 ns	1.51 ns
IR58025A/IR68	7.16	-0.7	0.78^{*}	1.44 ^{ns}
IR58025A/B10373	6.92	-4.0	0.88 ns	1.30 ns
IR64	7.21		1.05 ns	1.60 ns

Seed Production Model f Public Hybrid Rice	for
 Nucleus Seed Production of Parental lines Breeder Seed Production of Parental lines Foundation Seed Production of Parental lines 	 The SP phase aimed at producing genetically pure seeds of parental lines Undertaken by breeders and specialized institutions The SP phase aimed at producing more seeds of parental lines for use in hybrid seed production Undertaken by seed companies/specialized growers
4 Certified Hybrid SP (A x R seed production)	 The SP phase aimed at producing hybrid seeds Undertaken by trained seed growers/private companies
5. Hybrid Rice or F1 Cultivation	Commercial cultivation by farmers

Location	Hybrid	Season	Area (ha)	Total yiled (kg)	Yield (kg/ha)	
Pusakanegara	Maro	DS 2002	4,0	5050	1488	
Pusakanegara	Rokan	DS 2002	3,0	1382	466	
Pusakanegara	Rokan	DS 2003	1,0	550	550	7/51
Pusakanegara	Maro	WS 03/04		520	520	/ .//
Pusakanegara	Rokan	WS 03/04	1,0	730	730	100
Sukamandi	Maro	DS 2002	0,90	250	278	
Sukamandi	Rokan	DS 2002	0,60	90 DAAC	150	>
Sukamandi	Hipa5 Ceva	DS 2006	0,25	150	600	
Sukamandi	Hipa6 Jete	DS 2006	0,25	150	600	094
Sukamandi	Maro	MK 02	3,0	660	220	MDĽ.
Sukamandi	Hipa3	DS 2007	1,0	1200	1200	004
Sukamandi	Hipa5 Ceva	DS 2008		1340	1340	
Sukamandi	Hipa6 Jete	DS 2008	2,0	4580 🤇	2290	>
Muara	Maro	MK 02	1,0	4640	464	٥٨٥
Muara	Maro	MK 06	0,25	275	1100	XIIX
Muara	Rokan	MK 06	0,25	215	860	999
Tegalgondo	Maro	MH 03/04	1,0	320	320	244
Tegalgondo	Rokan	MH 03/04		710	710	345
Tegalgondo	Hipa6 Jete	MK06	0.25	150	600	0,00

ISSUES IDENTIFIED FOR FUTURE RESEARCH AND TECHNOLOGY DEVELOPMENT

- Instability expression of heterosis -> Increasing no of testing for early hybrid evaluation as OYT might identify hybrids > stable expression of heterosis.
- Resistant to major pests and diseases : HR var released in Ind are mostly S to BPH, BLB, and RTV \rightarrow could contribute to the instability of het expression and constrain to rapid adoption of hybrid rice technology
- Grain and rice quality \rightarrow e.g. milling recovery, broken rice, chalky, grain shape
- Hybrid of NPT rice → Inbred variety of NPT rice with higher yielding capacity has been released in Ind. Further increase in yield capacity could be obtained by developing hybrid of the NPT rice.

FUTURE PLAN

- · HR research still high priority in the next five year program.
- The major objectives are to dev better HR with high and stable het, res to BPH, BLB, & RTV, & good grain quality; to improve seed prod tech; & to dev ICM technology.
 NPT breeding material → used in HR breeding to improve the trible toteration.
- yield potential.
- Testing of promising hybrids will be conducted in more locations to identify hybrids with more stable heterosis.
- A network for testing HR has been developed between ICRR, some private companies, and AIAT present in all prov
- Research on HR seed prod will flowering synchronization between parental lines in different potential locations.
- Research on hybrid rice cultivation to develop appropriate ICM suitable for hybrid rice will be continued.
- Strengthening capacity of public seed farms will be continued by conducting training followed with training by doing on hybrid rice seed production technology.

CONCLUSION

- 35 HR released in Ind however, the dev of HR rice cultivation area slow due to the constraints of hybrid seed shortage, inconsistence of het expression, susceptibility of the some released hybrids to major pest and disease.
- Public-private sector partnership developed on hybrid seed production to accelerate the adoption of HR tech and some companies initiated to produce seed of public hybrids.
- Breeding to develop hybrid rice resistant to BPH, BLB, and RTV has high priority in the national rice research program and some promising hybrids were obtained.
- Breed mat including new developed parental lines & genetic source for desirable characters from IRRI are still needed.
- The gov of Ind supports not only the research & dev but also the dissemination and adoption of hybrid rice technology.

